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ABSTRACT

Analysis of inter-procedural data �ow (IDF) is a commonly encountered challenge

for verifying safety and security properties of large software. In order to address this

challenge, a pragmatic approach is to identify IDF patterns that are known to occur

in practice, and develop algorithms to detect and handle those patterns correctly. We

perform an empirical study to gather the IDF patterns in Linux, which is essential to

support such a pragmatic approach.

In our study, we �rst analyzed the Linux code to study how reference to dynam-

ically allocated memory in a function �ows out of the function. We analyzed instances

of memory allocation and identi�ed 6 IDF patterns. Second, we mined and analyzed

memory leak bug �xes from the Linux git repository. Third, we surveyed the literature

for static analysis tools that can detect memory leaks. Based on these studies, we found

that the set of IDF patterns associated with the memory leak bug �xes in Linux and

those that can be detected by the current static analysis tools is a subset of the 6 IDF

patterns we identi�ed.
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CHAPTER 1. INTRODUCTION

In program analysis, Data Flow analysis is the process of collecting information about

the way the variables are used, de�ned in the program. In many cases it is of interest to

know how a particular data item is used after it is de�ned in a function. For example

the usage of pointer to the allocated memory in a function is of interest to �nd memory

leak. Also, data-�ow analysis techniques play an important role in tools for performing

optimization, program understanding and maintenance, software testing, and veri�cation

of program properties.

If the analysis of the usage of data item is done within the function where the data

item is de�ned then it is called Intra-procedural Data Flow analysis. On the other hand,

Inter-procedural data �ow analysis extends the scope of data �ow analysis across function

boundaries. Figure 1.1 shows function computeAverage() which computes the average

of two numbers and return the result back to the caller function main(). The data in the

variable average which is de�ned in computeAverage() function �ows from it to main

function through return statement, thus requires Inter-procedural data �ow analysis to

track the data present in average variable. The data in variable avg which is de�ned in

computeAveragePrint() remains within the function. Only Intra-procedural data �ow

analysis is required to track the data present in avg variable.
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Figure 1.1 Program data �ow

The work in this empirical study is motivated to provide answers to the following

questions:

• What are the di�erent IDF patterns that must be considered for the automated

static analysis of memory leaks in Linux kernel?

• How frequent are those patterns?

1.1 Thesis Contributions

This thesis provides the following key contributions:

1. The �nding of Inter-procedural Data Flow(IDF) patterns involved in memory leak

analysis and their frequency of occurrence in Linux Operating System.
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2. Mining and analysis of memory leak bug �xes in Linux.

1.2 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 de�nes the various IDF

patterns that have been found by our empirical study. Chapter 3 discusses each IDF

pattern with examples from Linux and the challenges associated with each IDF pattern

for memory leak analysis. Chapter 4 discusses our study of Linux memory leak bug �xes.

Chapter 5 discusses our study of the literature survey of current static analysis tools.

Chapter 6 discusses the related work. Chapter 7 summarizes and concludes our work.
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CHAPTER 2. INTER-PROCEDURAL DATA FLOW(IDF)

PATTERNS

When a memory is allocated in a function, a pointer to the memory can escape to

other threads of execution, or to calling functions. There are di�erent ways in which a

pointer(p) to an allocated memory inside a function can escape to other functions. We

categorize the escape of variable p from a function into six di�erent IDF patterns. In

this chapter we de�ne each IDF pattern and discuss their detail in next chapter.

In all the following examples of IDF patterns, the memory is allocated in the function

foo and p is a pointer to the allocated memory.

2.1 Parameter Escape(PEsc):

When p or any variable tainted (a variable p taints variable q when p is assigned

to q after the variable p is de�ned) by it is passed to some other function through its

parameter or returned to caller of foo through one of its arguments then we call it as

parameter escape . Listing 2.1 and listing 2.2 shows an example of parameter escape.

Listing 2.1 Parameter escape to the caller of function foo()

void foo(int *a){

//some code

int *p = malloc(sizeof(int)*10);

a=p;

//some code

}
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Listing 2.2 Parameter escape to the function called by foo()

void foo (){

//some code

int *p = malloc(sizeof(int )*10);

bar(p);

//some code

}

In listing 1 the pointer p is passed to the caller of foo when its argument a is tainted

with p as shown by the statement a = p. In listing 2 the pointer p is escaped to function

bar when function bar is called and p is passed as one of its parameter.

2.2 Return Escape(REsc):

When p or any variable tainted by it is returned from function foo then we classify

such an escape of p as return escape. It is called so because in this case the allocated

memory escapes to the caller of foo through the returned value. Listing 2.3 shows an

example of return escape.

Listing 2.3 Return escape

int* foo(){

//some code

p = malloc(sizeof(int)*10);

//some code

return p;

}
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2.3 Global Escape(GEsc):

When p or any variable tainted by it is assigned to a global variable, we classify such

an escape as global escape. Listing 2.4 shows an example of global escape.

Listing 2.4 Global escape

int *g;// global variable

void foo(){

//some code

int *p = malloc(sizeof(int)*10);

g=p;

//some code

}

2.4 Escape Through Function Pointer(FPEsc):

In this type of IDF pattern, the reference to the allocated memory is passed to the

function(f) parameter. The function f is called using function pointer. Listing 2.5 shows

the example of such IDF pattern. This pattern uses only PEsc IDF pattern to escape p.

Listing 2.5 Escape through function pointer

struct{

int a;

int (*fp)(int*);//fp is function pointer

}myStruct;

void foo(myStruct *s){

int p = malloc ();

//some code
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s->fp(p);

//some computational code

return;

}

In listing 5 the highlighted line shows the call through a function pointer and the

pointer to the allocated memory is passed as a parameter.

2.5 Escape By A Pointer To A Field Of Structure(SFEsc):

In this type of IDF pattern, the memory is allocated to a structure s in function foo

and instead of a pointer to the s, a pointer to one of its �elds is passed using any one of

the base IDF pattern from foo. Listing 2.6 shows an example of such IDF pattern.

Listing 2.6 Escape through a �eld of structure

struct{

int a;

struct1 m;

}myStruct;

void foo(){

myStruct* s = malloc(sizeOf(myStruct));

// initialize other members of the structure

return &s->m ;

}

In listing 6 �rst the memory of structure of type myStruct is allocated and assigned

to pointer s. Then the address of �eld m of the structure is returned to the caller of foo.
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2.6 Escape By A Pointer Inserted In A Linked List(LLEsc):

When p or any variable tainted by it escapes from function foo by inserting it into

a linked list, we classify such an escape as escape through linked list. Pointer p which

is inserted to the linked list can escape from foo using any of the base IDF pattern. In

listing 2.7 function foo allocates memory to structure of type myStruct and assigns the

address of the allocated memory to variable s. The pointer s is then added to the linked

list l using list_add function.

Listing 2.7 Escape to linked list

//list defined globally

struct list{

list *next , *previous;

}l;

struct myStruct{

int a;

list m;

}

static inline void list_add(struct list_head *new ,struct list_head *

prev ,struct list_head *next) {

next ->prev = new;

new ->next = next;

new ->prev = prev;

prev ->next = new;

}

void foo(){

myStruct *s = malloc(sizeOf(myStruct));

// intialise other members of structure myStruct

list_add(s,l.previous ,l.next);

}
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CHAPTER 3. CHALLENGES ASSOCIATED WITH IDF

PATTERNS FOR MEMORY LEAK ANALYSIS IN LINUX

KERNEL

In this chapter, we will show the result of our empirical study on Linux. We will

show the �ndings by presenting the example cases of each type of IDF pattern. Also we

will show the frequency of occurrence of these patterns in Linux.

For �nding the IDF patterns we used Linux (version 3.12) as our base software. We

initially used static analysis tool for �nding how the pointer to the allocated memory in

a function escapes out of it. Using our analysis based on static analysis tool, generated

signi�cant number of false positives like the one shown in listing 3.1. In the example

shown in listing 3.1 pointer wq points to the allocated memory and taints variable ei− >

socket.wq at line 14. The last statement of the function returns the address of pointer

ei− > vfs inode. Further listing 3.2 shows the recovery of pointer wq from the variable

that was returned by the allocating function sock alloc inode(),which is then freed �nally.

Our tool fails to detect such data �ow and shows such type of cases as if the pointer to

the allocated memory has not escaped at all.

To more accurately determine IDF patterns we manually analyzed how the pointer

to the allocated memory escapes out of the function. We have done our study on 838

instances of kmalloc(). Linux uses kmalloc() function call to allocate memory dynami-

cally.

Listing 3.1 False positive from static analysis tool
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1 static struct inode *sock_alloc_inode(struct super_block *sb) {

2 struct socket_alloc *ei;

3 struct socket_wq *wq;

4 ei = kmem_cache_alloc(sock_inode_cachep , GFP_KERNEL);

5 if (!ei)

6 return NULL;

7 wq = kmalloc(sizeof (*wq), GFP_KERNEL);

8 if (!wq) {

9 kmem_cache_free(sock_inode_cachep , ei);

10 return NULL;

11 }

12 init_waitqueue_head (&wq ->wait);

13 wq->fasync_list = NULL;

14 RCU_INIT_POINTER(ei->socket.wq , wq);

15 ei->socket.state = SS_UNCONNECTED;

16 ei->socket.flags = 0;

17 ei->socket.ops = NULL;

18 ei->socket.sk = NULL;

19 ei->socket.file = NULL;

20 return &ei ->vfs_inode;

21 }

Listing 3.2 Deallocating memory in sock destroy inode()

stat ic void sock_destroy_inode ( struct inode ∗ inode ) {

struct socke t_a l l o c ∗ e i ;

struct socket_wq ∗wq ;

e i = conta iner_of ( inode , struct socket_al loc , vfs_inode ) ;

wq = rcu_dere ference_protected ( e i−>socket .wq , 1) ;

k free_rcu (wq , rcu ) ;

kmem_cache_free ( sock_inode_cachep , e i ) ;

}
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3.1 Example Cases Of IDF Patterns From Linux

In chapter 2 we had de�ned the IDF patterns, in this chapter we will discuss the IDF

patterns in detail by showing the actual examples of each IDF pattern from Linux.

1. Parameter Escape(PEsc): There are 501 memory allocation instances found in

Linux kernel as shown in �gure 3.3 in which the variable pointing to the address of

allocated memory is escaped through parameter only. Listing 3.3 shows example

case of PEsc in which the pointer to the allocated memory data is passed to the

function usb control message() function. We call it as PEsc to child. For memory

leak analysis it is required to track the pointer in usb control message() as well.

This case as we can see is more challenging than Intra-procedural data �ow analysis

for detecting memory leaks.

Listing 3.3 Parameter escape to child function

static void ntrig_report_version(struct hid_device *hdev) {

int ret;

char buf [20];

struct usb_device *usb_dev = hid_to_usb_dev(hdev);

unsigned char *data = kmalloc(8, GFP_KERNEL);

if (!data)

goto err_free;

ret = usb_control_msg(usb_dev , usb_rcvctrlpipe(usb_dev , 0)

,USB_REQ_CLEAR_FEATURE ,USB_TYPE_CLASS |

USB_RECIP_INTERFACE | USB_DIR_IN ,0x30c , 1, data , 8,

USB_CTRL_SET_TIMEOUT);

if (ret == 8) {

ret = ntrig_version_string (&data[2], buf);

}

err_free:

kfree(data);

}
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Listing 3.4 shows another example of PEsc IDF pattern in which the pointer to

the allocated memory is passed to the parent(caller) of the function.

Listing 3.4 Parameter escape to parent function

static int rock_continue(struct rock_state *rs) {

int ret = 1;

int blocksize = 1 << rs ->inode ->i_blkbits;

const int min_de_size = offsetof(struct rock_ridge , u);

//some code

if (rs ->cont_extent) {

struct buffer_head *bh;

rs->buffer = kmalloc(rs->cont_size , GFP_KERNEL);

if (!rs ->buffer) {

ret = -ENOMEM;

goto out;

}

ret = -EIO;

bh = sb_bread(rs ->inode ->i_sb , rs ->cont_extent);

if (bh) {

memcpy(rs ->buffer , bh ->b_data + rs->cont_offset ,

rs->cont_size);

put_bh(bh);

rs->chr = rs ->buffer;

rs->len = rs->cont_size;

rs->cont_extent = 0;

rs->cont_size = 0;

rs->cont_offset = 0;

return 0;

}

printk("Unable to read rock -ridge attributes\n");
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} out:

kfree(rs->buffer);

rs->buffer = NULL;

return ret;

}

In listing 3.4 the highlighted lines shows that memory is allocated to the rs− >

buffer. As pointer rs is the argument of the rock contine function so the reference

to the memory escapes to the callers of rock contine. Once the pointer to the

allocated memory passes to the caller of the function, it is necessary to check all

the callers for memory free. Figure 3.1 shows the reverse call graph (RCG) of

rock contine function. Thus the challenge involves traversing each path of the

RCG of rock contine function to check if allocated memory is freed.

Figure 3.1 Reverse call graph

2. Return Escape(REsc):There are 88 memory allocation instances found in Linux

kernek as shown in �gure 3.3 in which the variable pointing to the address of allo-
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cated memory is escaped through return statement. Listing 3.5 shows an example

case of Return Escape.

Listing 3.5 Return escape Linux example 1

struct nfs_seqid *nfs_alloc_seqid(struct nfs_seqid_counter *

counter , gfp_t gfp_mask) { struct nfs_seqid *new;

new = kmalloc(sizeof (*new), gfp_mask);

if (new != NULL) {

new ->sequence = counter;

INIT_LIST_HEAD (&new ->list);

new ->task = NULL;

}

return new;

}

In listing 3.5 the variable new points to the allocated memory and is escaped to

the caller of nfs alloc seqid function through return statement.The challenge in

handling this IDF pattern for memory leak analysis is similar to that of PEsc to

parent IDF pattern, as the pointer to the allocated memory escapes to the caller

of the function.

Listing 3.6 shows another example case of return escape.

Listing 3.6 Return escape Linux example 2

static void *esp_alloc_tmp(struct crypto_aead *aead , int nfrags ,

int seqihlen) { unsigned int len;

len = seqihlen;

len += crypto_aead_ivsize(aead);

//some code

len += sizeof(struct scatterlist) * nfrags;

return kmalloc(len , GFP_ATOMIC);

}
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3. Global Escape(GEsc):There are 25 memory allocation instances found in Linux

kernel as shown in �gure 3.3 in which the variable pointing to the address of

allocated memory is escaped through global variable. Listing 3.7 shows one of

example case of Global Escape.

Listing 3.7 Global escape Linux example 1

static struct usb_class {

struct kref kref;

struct class *class; } *usb_class;

static int init_usb_class(void) {

int result = 0;

if (usb_class != NULL) {

kref_get (&usb_class ->kref);

goto exit;

}

usb_class = kmalloc(sizeof (* usb_class), GFP_KERNEL);

if (! usb_class) {

result = -ENOMEM;

goto exit;

}

kref_init (&usb_class ->kref);

usb_class ->class = class_create(THIS_MODULE , "usbmisc");

if(IS_ERR(usb_class ->class)) {

result = PTR_ERR(usb_class ->class);

printk(KERN_ERR "class_create failed for usb 

devices\n");

kfree(usb_class);

usb_class = NULL;

goto exit;



www.manaraa.com

16

}

usb_class ->class ->devnode = usb_devnode;

exit:

return result;

}

Listing 3.8 Memory deallocation function

static void release_usb_class(struct kref *kref) {

class_destroy(usb_class ->class);

kfree(usb_class);

usb_class = NULL;

}

In the example shown in listing 3.7 the allocated memory is assigned to variable

usb class which is a pointer to the global structure of type usb class. Once the

reference to the allocated memory is escaped through GEsc pattern, the scope of

access of the memory reference becomes global and can be accessed by all the

functions that can access the global pointer. In this case as the usb class pointer is

statically de�ned global variable so it can be accessed by all the functions present

in the �le where the pointer is de�ned. So the challenge for memory leak analysis

not only involves analyzing the callers of the function(init usb class) but also to

analyze all the functions that can refer the global pointer. Listing 3.8 shows the

function the frees the allocated memory.

Listing 3.9 shows another example of global escape in which the address to the

allocated memory is assigned to the global pointer irc_bu�er.

Listing 3.9 Global escape Linux example 2

static char *irc_buffer;// global declaration
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static int __init nf_conntrack_irc_init(void) {

int i, ret;

if (max_dcc_channels < 1) {

return -EINVAL;

}

irc_exp_policy.max_expected = max_dcc_channels;

irc_exp_policy.timeout = dcc_timeout;

irc_buffer = kmalloc (65536 , GFP_KERNEL);

if (! irc_buffer)

return -ENOMEM;

/* If no port given , default to standard irc port */

if (ports_c == 0)

ports[ports_c ++] = IRC_PORT;

for (i = 0; i < ports_c; i++) {

//some code

}

return 0;

}

4. Escape through function pointer(FPEsc): We have found 36 instances of mem-

ory allocation as shown in �gure 3.4 in which the pointer to allocated memory is

escaped to another function(f) . The function f is called using function pointer.

Function pointers makes it di�cult to track which function is called using conven-

tional call �ow graphs. It is easy to build a call graph of A-calls-B when the call

statement explicitly mentions B. It is much harder to handle indirect calls. Listing

3.10 shows one of many such cases from Linux kernel.

Listing 3.10 Escape through function pointer Linux example 1

struct dm_dirty_log *dm_dirty_log_create(const char *type_name ,

struct dm_target *ti , int (* flush_callback_fn)(struct

dm_target *ti),
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unsigned int argc , char **argv) {

struct dm_dirty_log_type *type;

struct dm_dirty_log *log;

log = kmalloc(sizeof (*log), GFP_KERNEL);

//some code

log ->flush_callback_fn = flush_callback_fn;

log ->type = type;

if (type ->ctr(log , ti , argc , argv)) {

kfree(log);

put_type(type);

return NULL;

}

return log;

}

Figure 3.2 Possible calls by function pointer

In listing 3.10 the variable log is allocated and then passed as parameter to another

function using call to function pointer type− > ctr. Call through function pointer

is not a direct(static) function call, in a way that the information about the function

present in function pointer has to be extracted. Figure 3.2 shows the list of possible
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functions that can be called by calling type− > ctr function pointer. Determining

which speci�c function is called needs accurate data �ow analysis of function pointer

variable.

Listing 3.11 shows another example of such IDF pattern.

Listing 3.11 Escape through function pointer Linux example 2

static int fill_thread_core_info(struct elf_thread_core_info *t,

const struct user_regset_view *view , long signr , size_t *total)

{

//some code

for (i = 1; i < view ->n; ++i) {

//some code

void *data = kmalloc(size , GFP_KERNEL);

ret = regset ->get(t->task , regset , 0, size , data ,

NULL);

//some code

}

return 1;

}

5. Escape by a pointer to a Field of Structure(SFEsc):

(a) We have found 10 example cases of SFEsc pattern in Linux. Listing 3.12

shows an example of SFEsc pattern. In listing 3.12, structure gcred points

to the allocated memory and only the address of its �eld gcred− > gc base

is returned to the caller function. The caller of generic create cred now have

the reference of one of the �eld of the structure gcred.

Listing 3.12 Escape by a pointer to a �eld of structure Linux example 1

static struct rpc_cred * generic_create_cred(struct rpc_auth *

auth , struct auth_cred *acred , int flags) {



www.manaraa.com

20

struct generic_cred *gcred;

gcred = kmalloc(sizeof (*gcred), GFP_KERNEL);

if (gcred == NULL)

return ERR_PTR(-ENOMEM);

rpcauth_init_cred (&gcred ->gc_base ,acred ,& generic_auth

,& generic_credops);

gcred ->gc_base.cr_flags = 1UL << RPCAUTH_CRED_UPTODATE

;

gcred ->acred.uid = acred ->uid;

gcred ->acred.gid = acred ->gid;

gcred ->acred.group_info = acred ->group_info;

gcred ->acred.ac_flags = 0;

if (gcred ->acred.group_info != NULL)

get_group_info(gcred ->acred.group_info);

gcred ->acred.machine_cred = acred ->machine_cred;

gcred ->acred.principal = acred ->principal;

dprintk("RPC:allocatedscredpforuiddgidd\n",gcred ->acred.

machine_cred?"machine": "generic",gcred ,

from_kuid (& init_user_ns , acred ->uid),

from_kgid (& init_user_ns , acred ->gid));

return &gcred ->gc_base;

}

The allocated memory is freed in the function generic_free_cred() as shown

in listing 3.13. container of is a macro de�ned in Linux which uses pointer

arithmetic to determine address of allocated memory of structure type s from

its �eld address. In the current example as shown in listing 3.13, the address

of allocated memory of structure generic cred(represented by gcred) is cal-

culated from the variable cred (which holds the address of gcred− > gcbase

)by subtracting its o�set value from the cred .The o�set value is simply the

number of bytes a �eld of structure is away from the start of the structure.
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Listing 3.14 shows the generic macro which is used in Linux for calculating

the o�set.

Listing 3.13 Freeing by o�set calculation

static void generic_free_cred(struct rpc_cred *cred) {

struct generic_cred *gcred = container_of(cred , struct

generic_cred , gc_base);

if (gcred ->acred.group_info != NULL)

put_group_info(gcred ->acred.group_info);

kfree(gcred);

}

Listing 3.14 Linux container of macro example

#define container_of(ptr , type , member) ({\

const typeof( ((type *)0)->member ) *__mptr = (ptr

);\

(type *)( (char *) __mptr - offsetof(type ,member) )

;

})

Listings 3.15 and 3.16 shows more examples of SFEsc.

Listing 3.15 Escape through a �eld of structure Linux example 2

static struct cache_deferred_req *svc_defer(struct cache_req *

req) {

struct svc_rqst *rqstp = container_of(req , struct

svc_rqst , rq_chandle);

struct svc_deferred_req *dr;

if (rqstp ->rq_arg.page_len || !rqstp ->rq_usedeferral)

return NULL; /* if more than a page , give up

FIXME */

if (rqstp ->rq_deferred) {
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dr = rqstp ->rq_deferred;

rqstp ->rq_deferred = NULL;

} else {

size_t skip;

size_t size; /* FIXME maybe discard

if size too large */

size = sizeof(struct svc_deferred_req) + rqstp

->rq_arg.len;

dr = kmalloc(size , GFP_KERNEL);

//some code

}

svc_xprt_get(rqstp ->rq_xprt);

dr->xprt = rqstp ->rq_xprt;

rqstp ->rq_dropme = true;

dr->handle.revisit = svc_revisit;

return &dr ->handle;

}

Listing 3.16 Escape through a �eld of structure Linux example 3

void alloc_acpi_hp_work(acpi_handle handle , u32 type , void *

context , void (*func)(struct work_struct *work)) {

struct acpi_hp_work *hp_work;

int ret;

hp_work = kmalloc(sizeof (* hp_work), GFP_KERNEL);

if (! hp_work)

return;

hp_work ->handle = handle;

hp_work ->type = type;

hp_work ->context = context;

INIT_WORK (&hp_work ->work , func);

ret = queue_work(kacpi_hotplug_wq , &hp_work ->work);

if (!ret)
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kfree(hp_work);

}

(b) There is no need to calculate the o�set if the pointer to the address of �rst

�eld is escaped. This is because the address of �rst �eld of a structure is

same as that of parent structure. As shown in listing 3.17 variable p of type

proc_mount is allocated in mounts_open_common() function. One of the

highlighted line shows that the allocated memory is escaped to file parameter

when address of �rst �eld of p is assigned to �le->private_data.

Listing 3.17 Escape through a �eld of structure special case

static int mounts_open_common(struct inode *inode , struct

file *file ,int (*show)(struct seq_file *, struct

vfsmount *)){

struct proc_mounts *p;

//some code//

*p = kmalloc(sizeof(struct proc_mounts),

GFP_KERNEL);

file ->private_data = &p->m;//the allocated

variable is escaped to file structure

//some code

}

Listing 3.18 shows the way allocated memory address is retrieved and freed.

In line 2 pointer m points to the starting address of allocated proc_mount

structure. This is because file− > private data contains the address of the

�rst �eld of proc_mount structure and the �rst �eld of any structure will have

the same address as that of parent structure. So in line 4 when kfree(m) is

called this will actually free the memory allocated to pointer p of listing 3.17

although the pointer m is declared of type seq file and not the original type
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proc mounts.

Listing 3.18 Deallocation of memory pointed by �eld of structure

1 int seq_release(struct inode *inode , struct file *file) {

2 struct seq_file *m = file ->private_data;

3 kvfree(m->buf);

4 kfree(m);

5 return 0;

6 }

The di�erence between the previous two example cases discussed, lies in the way

the pointer to the allocated memory is extracted from its �eld. In example shown in

listing 3.13, using container of macro the pointer to allocated memory is retrieved

which is of same type as that of allocated structure(generic cred in our case), but

in case of second example the pointer of allocated variable when retrieved is not

of the same type as that of allocated structure. This case uses the fact that the

address of �rst �eld of a structure can be used to free the parent structure. So

although the type of variable m in listing 3.18 is not that of proc mounts still call

to kfree(m) will free the memory allocated to pointer p of type proc mounts. An

attempt to match the allocation and deallocation sites by matching the types of

pointers involved may work (albeit with false positives) in example (a), however,

such a strategy will fail in case (b).

For memory leak analysis SFEsc pattern involves additional complexity of recov-

ering the address of allocated memory of structure from its �eld address.

6. Escape by a Pointer inserted in a Linked List(LLEsc): We have found 69

instances of memory allocation in which the pointer to allocated memory is escaped

by adding it to Linked List. In the example shown in listing 3.19, it can be seen
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that the address of List which is a �eld of allocated structure &new− > list is

added to global list nfs_referral_count_list.

Listing 3.19 Escape by a pointer inserted in a linked list Linux example 1

static int nfs_referral_loop_protect(void) {

struct nfs_referral_count *p, *new;

int ret = -ENOMEM;

new = kmalloc(sizeof (*new), GFP_KERNEL);

if (!new)

goto out;

new ->task = current;

new ->referral_count = 1;

ret = 0;

spin_lock (& nfs_referral_count_list_lock);

p = nfs_find_referral_count ();

if (p != NULL) {

if (p->referral_count >= NFS_MAX_NESTED_REFERRALS)

ret = -ELOOP;

else

p->referral_count ++;

} else {

list_add (&new ->list , &nfs_referral_count_list);

new = NULL;

}

spin_unlock (& nfs_referral_count_list_lock);

kfree(new);

out:

return ret;

}

Listing 3.20 shows method nfs referral loop unprotect which fetches the allo-

cated variable from global list (corresponding to the memory allocation in listing



www.manaraa.com

26

3.19, and frees it. Here, method nfs find referral count is called which tra-

verses the global list nfs referral count list and returns the pointer to the cur-

rent nfs referral count variable. The returned pointer (variable p in Listing 3.20)

points to the memory location to be freed. Listing 3.21 shows another example of

such IDF pattern.

Listing 3.20 Dereferencing pointer from list

static void nfs_referral_loop_unprotect(void) {

struct nfs_referral_count *p;

spin_lock (& nfs_referral_count_list_lock );

p = nfs_find_referral_count ();

p->referral_count --;

if (p->referral_count == 0)

list_del (&p->list);

else

p = NULL;

spin_unlock (& nfs_referral_count_list_lock );

kfree(p);

}

Listing 3.21 Escape by a pointer inserted in a linked list Linux example 2

static void quirk_awe32_add_ports(struct pnp_dev *dev ,struct

pnp_option *option , unsigned int offset) {

struct pnp_option *new_option;

new_option = kmalloc(sizeof(struct pnp_option), GFP_KERNEL

);

if (! new_option) {

return;

}

*new_option = *option;

new_option ->u.port.min += offset;

new_option ->u.port.max += offset;
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list_add (&new_option ->list , &option ->list);

pnp_option_set(option));

}

In addition to the challenges mentioned for base IDF patterns for memory leak

analysis, the additional challenge involves in handling LLEsc IDF pattern is that

the static analysis tool needs to check that all the references to the allocated mem-

ory that has been added to the collection(List) should be freed eventually. There

is no easy way to track the individual memory reference once it is added to the list.

For example in the example shown in listing 3.20 on completion of each task the

pointer to the allocated memory p is removed from the list and then freed using

kfree(). So each time when reference to the allocated memory is recovered from

the list, it is freed immediately after deleting the reference from the list.Thus at the

end when all the pointers to the allocated memory are deleted, their is no memory

reference left unfree.

Figures 3.3 and 3.4 shows the frequency distribution of IDF patterns in Linux. Appendix

at the end list all the functions in Linux analyzed for empirical study.

Note: There are 11 instances of memory allocation in which the pointer to the allo-

cated memory is escaped through combination of PEsc and LLEsc. i.e. PEsc ∩ LLEsc

= 11. Similarly, LLEsc ∩ REsc = 4, LLEsc ∩ GEsc = 1 and FPEsc ∩ PEsc = 30. Also

we have found 13 instances of memory allocation in which the pointer to the allocated

memory does not escape from the function. i.e. there is no inter-procedural data �ow

involved for such instances of memory allocation. So total memory instances analyzed

are 708 + 117 + 13 = 838.



www.manaraa.com

28

Figure 3.3 Frequency distribution of IDF patterns PEsc, REsc, GEsc

Figure 3.4 Frequency distribution of IDF patterns SFEsc, LLEsc, FPEsc
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CHAPTER 4. STUDY OF MEMORY LEAK FIXES IN

LINUX KERNEL

We performed this study to check the IDF patterns associated with memory leak

bug �xes in Linux. In order to analyze memory leak related bug �xes in Linux we chose

Linux git repository.

We use the git version control for Linux to check for the commits that are related to

memory leaks. We have analyzed 1200 cases of memory leak related commits.

After setting up the Linux repository we searched all the commits that are related

to memory leaks. We used 'git log �grep=�memory leak� ' command to search for all the

logs of commits that contain the word memory leak. We then manually analyzed each

commit to check if the �x provided for the bug is related to memory leak. With this

we found 1200 cases of memory leak related bug �xes in the master branch. We then

analyzed each case to check if there exists any pattern for such �xes.

4.1 Results

Out of 1200 bug �xes we found a pattern of bug �xes that are related to providing

�x in error path of a method. The example for such cases is shown in listing 4.1.

Listing 4.1 Memory leak �x in error path example 1

struct vport *ovs_vport_alloc(int priv_size , const struct vport_ops *

ops , const struct vport_parms *parms) {

vport = kzalloc(alloc_size , GFP_KERNEL);
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//some code

if (ovs_vport_set_upcall_portids(vport , parms ->upcall_portids))

{

kfree(vport);

return ERR_PTR(-EINVAL);

}

//some code

return vport;

}

Listing 4.2 shows another case of memory leak �x provided in error path. The line

in orange color is deleted, lines in yellow color are added after the �x.

Listing 4.2 Memory leak �x in error path example 2

static int pxa_ssp_probe(struct snd_soc_dai *dai) {

//some code

priv = kzalloc(sizeof(struct ssp_priv), GFP_KERNEL);

//some code

ssp_handle = of_parse_phandle(dev ->of_node , "port", 0);

if (! ssp_handle) {

return -ENODEV;

ret -ENODEV;

goto err_priv;

}

//some code

err_priv:

kfree(priv);

return ret;

}

Examples in listings 4.1 and 4.2 shows that the pointer to the allocated memory is

either passed to another function through parameter which involves PEsc IDF pattern

or it is not escaped at all which is the case of intra-procedural data �ow.
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There also exists a pattern of bug �xes in which memory allocated to a structure

is freed without freeing the memory allocated to its �eld and vice versa, an example is

shown in listing 4.3.

Listing 4.3 Partial memory free example 1

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) {

hrtimer_cancel (&vcpu ->arch.comparecount_timer);

kvm_vcpu_uninit(vcpu);

kvm_mips_dump_stats(vcpu);

kfree(vcpu ->arch.guest_ebase);

kfree(vcpu ->arch.kseg0_commpage);

kfree(vcpu);

}

Listing 4.4 shows an example in which developer frees the memory associated with

structure without freeing its member's memory. So the colored statement shown in the

�gure is added to �x the associated memory leak.

Listing 4.4 Partial memory free example 2

void sta_info_free(struct ieee80211_local *local , struct sta_info *sta)

{

if (sta ->rate_ctrl)

rate_control_free_sta(sta);

kfree(rcu_dereference_raw(sta ->sta.rates));

kfree(sta);

}

The IDF pattern involved in examples shown in listings 4.3 and 4.4 is PEsc because

the pointer to the allocated memory is the argument of the function called to free the

memory.

Listing 4.5 shows LLEsc IDF pattern involved in memory leak bug �x. The list

info− > zone list is traversed using the macro list for each entry safe and the ref-
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erence to the allocated memory is recovered from the list which is then freed in the

statement kfree(publ);

Listing 4.5 LLEsc IDF pattern associated with bug �x

static void tipc_purge_publications(struct name_seq *seq) {

struct publication *publ , *safe;

struct sub_seq *sseq;

struct name_info *info;

if (!seq ->sseqs) {

nameseq_delete_empty(seq);

return;

}

sseq = seq ->sseqs;

info = sseq ->info;

list_for_each_entry_safe(publ ,safe ,&info ->zone_list ,zone_list){

tipc_nametbl_remove_publ(publ ->type ,publ ->lower ,publ ->node ,

publ ->ref , publ ->key);

kfree(publ);

}

}

All the bug �xes that we have analyzed have IDF patterns out of the six patterns

that we have characterized in Chapter 3.
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CHAPTER 5. STUDY OF STATIC ANALYSIS TOOLS

In this section we present analysis of our literature survey on static analysis tools to

see the IDF patterns associated with example cases in which tools claims to �x memory

leaks.

The paper by Sui et al Sui et al. (2012) developed a tool called SABER which uses

sparse value �ow analysis to detect memory leaks in C programs. Sparse value �ow

analysis is di�erent from data �ow analysis. The later tracks the �ow of values iteratively

at each point through the control �ow while the former tracks the �ow of values sparsely

through def-use chains or SSA(Static Single Assignment) form. Figure 5.1 shows a leaky

code in �icecast� software in which the memory is allocated at lines 174 and 176. The

pointer ”entry” to the allocated memory is then passed as parameter to the function

avl insert function. The leak is in one of the error path at line 122 where the function

simply returns without freeing the memory. This scenario involves PEsc IDF pattern.

Figure 5.2 shows a leaky code from �wine� software. In functionOLEPictureImpl LoadGif ,

GifOpen is called at line 1021 so that two heap objects are allocated at lines 898 and 905.

One of the two objects is passed to gif and the other to the �eld private of GifFile. At the

end of OLEPictureImpl LoadGif , there is a call to DGifCloseF ile to free the two ob-

jects. However, there is a test at line 1030 sitting between the two calls. The two objects

are never freed when this test evaluates to true. This scenario involves REsc IDF pattern

as the pointer GifFile is assigned to the allocated memory in function DGIFOPEN()

and is returned to the caller of DGIFOPEN() through return statement.

The paper by Yungbum Jung and Yi (2008) Jung developed a tool called SPARROW
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Figure 5.1 Memory leak handled by SABER tool example 1

that detects memory leaks in C programs using function summaries. The tool summarize

each function while preserving its memory behavior. This function summary is then

used at each call site of the function to analyze memory behavior inter-procedurally.

There are many examples in the paper showing the representation of summaries when

the allocated memory is returned to the caller function. Figure 5.3 shows a code from

�mesa� program containing two memory leaks. First leak occurs at line 273 when in one

of the error path, function returns without freeing the pointer osmesa. The second leaks

occurs when some heap allocations by the function g1 create context are not freed by the

function g1 destroy_context. To detect such leak, analysis of both g1 create context

and g1 destroy_context functions is required. The tool in the paper claims to detect

both memory leaks. It can be interpreted from the example that the tool can handle both
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Figure 5.2 Memory leak handled by SABER tool example 2

REsc and PEsc IDF patterns because function g1 create context returns the reference

to the allocated memory and this reference is passed as parameter to the function

g1 destroy_context for deallocation.

The paper by Yichen Xie and Aiken (2005) developed a tool called SATURN that

can perform path and context sensitive memory leak analysis, in addition to detecting

memory leaks in error paths of a function's control �ow. The tool uses abstraction

and boolean satis�ability to achieve inter-procedural path sensitivity. Figure 5.4 shows

example cases of memory leaks that SATURN claims to detect. Part (a) of the code in

�gure 5.4 shows the memory leaks occurs in error path which does not involve any IDF

pattern. In part (b) the reference to the allocated memory is returned and is assigned

to the pointer longfilename. In part (c) the pointer to the allocated memory is passed
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Figure 5.3 Memory leaks handled by SPARROW tool

to another function through parameter. Clearly the example shown in part (b) and (c)

involves REsc and PEsc IDF pattern respectively.

Figure 5.4 Memory leaks handled by SATURN tool

The paper by Sigmund Cherem et al. (2007) et al presents a technique that tracks the

�ow of values from allocation points to deallocation points using a sparse representation

of the program consisting of a value �ow graph. This graph captures def-use relations
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and value �ows via program assignments. Figure 5.5 shows an example of leaky code

which is claimed to be handled by the tool. At line 292 call to concat() function allocates

the memory(as shown at line 58), the reference to which is returned and stored in object

f list . Next line 293 calls concat() again which overwrites f list with the reference

to the new memory location, the reference to the old memory is thus lost resulting in

memory leak. Fixing this memory leak involves handling of REsc IDF pattern.

Figure 5.5 Leaky code example

It can be seen from the above analysis that no new IDF pattern is involved in the

examples covered by the papers on static analysis tools.
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CHAPTER 6. RELATED WORK

Kang Gui and Suraj Kothari Gui and Kothari (2010) identi�ed two patterns indicative

of good software design with respect to matching pair property such as memory leak.

The empirical study of Linux kernel is done to check the existence of such patterns.

Andy Chou et al. Chou et al. (2001) presented the result of the empirical study of

Operating System errors in Linux kernel. The study discussed various parameters of

software bugs like life time of a bug, distribution of software bugs in Linux Kernel etc.

Also the study presented how the bugs like memory leaks, null pointer de-referencing etc

are distributed across the various modules of Linux kernel.

Neil Brown Brown (2009) discussed various design patterns used in the development

of Linux kernel. The patterns deals with the life time of object. The article also relates

how the understanding of design patterns is important for memory leak analysis.

Dor et al. use Dor et al. (2000) TVLA, a shape analysis tool based on 3-valued

logic, to prove the absence of memory leaks and other memory errors in several list

manipulation programs. The paper also presents challenges for memory leak analysis

if list manipulation is involved, similar to the LLEsc pattern we discussed. Their anal-

ysis veri�es these programs successfully, but is intra-procedural and cannot be applied

to recursive and multi-procedure programs. Of these analysis [Heine and Lam (2003),

Hackett and Rugina (2005)] target referencing leaks; and [Xie and Aiken (2005), Dor

et al. (2000)] target reach-ability leaks.

Winter Winter et al. (2013) et al. presented path sensitive data �ow analysis to

verify memory leaks. Hind et al. Hind et al. (1999) presented �ow sensitive algorithm
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for Inter-procedural pointer alias analysis. The paper also presents techniques to track

the pointer in the presence of function pointers.

In addition to the papers discussed in section �ve, Das et al. Das et al. (2002) and

Engler at al. Engler et al. (2000) employs data �ow analysis techniques to statically verify

memory leaks. In addition to that there are some open source tools like [Marjamaki,

Cla, Spl] that are used to detect memory leaks in software systems. Similarly Sparse

static analysis Spa tool is speci�cally implemented to �nd fault in Linux Kernel.

Nathaniel et al Ayewah et al. (2007) evaluated the accuracy of static analysis tools

by analyzing the warnings provided by the tools.
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CHAPTER 7. CONCLUSION

We have observed various ways in which a pointer to the allocated memory escapes

from one function to other. We have categorized such escape cases into six Inter-

procedural Data Flow(IDF) patterns. We have discussed about the challenges involved

in memory leak analysis in the presence of each pattern. Our study of memory leak

bug �xes in Linux kernel and the leaks that can be detected by current state of the art

static analysis tools reveals four out of six patterns which we have identi�ed. We believe

that such IDF patterns will serve as a reference to static analysis tools to achieve higher

accuracy for performing automated memory leak analysis.



www.manaraa.com

41

BIBLIOGRAPHY

Clang: Static analysis tool. http://clang-analyzer.llvm.org/. 39

Sparse: Static analysis tool for linux kernel. http://kernelnewbies.org/Sparse/. 39

Splint: Static analysis tool for c. http://splint.org/. 39

Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., and Zhou, Y. (2007). Evaluat-

ing static analysis defect warnings on production software. In Proceedings of the 7th

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, PASTE '07, pages 1�8, New York, NY, USA. ACM. 39

Brown, N. (2009). Comprehensive and e�cient protection of kernel control data. Infor-

mation Forensics and Security, IEEE Transactions on. 38

Cherem, S., Princehouse, L., and Rugina, R. (2007). Practical memory leak detection

using guarded value-�ow analysis. In Proceedings of the 2007 ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI '07, pages 480�491,

New York, NY, USA. ACM. 36

Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. (2001). An empirical study

of operating systems errors. In Proceedings of the Eighteenth ACM Symposium on

Operating Systems Principles, SOSP '01, pages 73�88, New York, NY, USA. ACM. 38

Das, M., Lerner, S., and Seigle, M. (2002). Esp: Path-sensitive program veri�cation in

polynomial time. In ACM SIGPLAN Notices, volume 37, pages 57�68. ACM. 39

http://clang-analyzer.llvm.org/
http://kernelnewbies.org/Sparse/
http://splint.org/


www.manaraa.com

42

Dor, N., Rodeh, M., and Sagiv, S. (2000). Checking cleanness in linked lists. In Static

Analysis, 7th International Symposium, SAS 2000, Santa Barbara, CA, USA, June 29

- July 1, 2000, Proceedings, pages 115�134. 38

Engler, D., Chelf, B., Chou, A., and Hallem, S. (2000). Checking system rules using

system-speci�c, programmer-written compiler extensions. In Proceedings of the 4th

Conference on Symposium on Operating System Design & Implementation - Volume

4, OSDI'00, pages 1�1, Berkeley, CA, USA. USENIX Association. 39

Gui, K. and Kothari, S. (2010). An Empirical Study to Discover Patterns for Checking the

Matching Pair Property. In International Conference on Computational Intelligence

and Software Engineering. 38

Hackett, B. and Rugina, R. (2005). Region-based shape analysis with tracked locations.

In ACM SIGPLAN Notices, volume 40, pages 310�323. ACM. 38

Heine, D. L. and Lam, M. S. (2003). A practical �ow-sensitive and context-sensitive c

and c++ memory leak detector. ACM SIGPLAN Notices, 38(5):168�181. 38

Hind, M., Burke, M., Carini, P., and deok Choi, J. (1999). Interprocedural pointer alias

analysis. ACM Transactions on Programming Languages and Systems, 21. 38

Jung, Y. and Yi, K. (2008). Practical memory leak detector based on parameterized

procedural summaries. In Proceedings of the 7th International Symposium on Memory

Management, ISMM '08, pages 131�140, New York, NY, USA. ACM. 33

Marjamaki, D. Cppcheck: Static analysis tool. 39

Sui, Y., Ye, D., and Xue, J. (2012). Static memory leak detection using full-sparse

value-�ow analysis. In Proceedings of the 2012 International Symposium on Software

Testing and Analysis, ISSTA 2012, pages 254�264, New York, NY, USA. ACM. 33



www.manaraa.com

43

Winter, K., Zhang, C., Hayes, I. J., Keynes, N., Cifuentes, C., and Li, L. (2013). Path-

sensitive data �ow analysis simpli�ed. In Formal Methods and Software Engineering,

pages 415�430. Springer. 38

Xie, Y. and Aiken, A. (2005). Context- and path-sensitive memory leak detection. SIG-

SOFT Softw. Eng. Notes, 30(5):115�125. 35, 38



www.manaraa.com

44

APPENDIX. FUNCTIONS IN LINUX ANALYZED FOR

EMPIRICAL STUDY

This appendix will list all the functions that have been analyzed in Linux to �nd

IDF patterns, further we have categorized each function with the type of IDF pattern

associated with the pointer to the allocated memory in the function.

• Functions in which the allocated variable escape through IDF Pattern SFEsc are:

Table .1 Functions involve SFEsc IDF pattern

Function Pointer to the allocated memory

i915_gem_set_tiling obj.bit_17

mounts_open_common p

svc_defer dr

rsc_alloc rsci

ip_map_alloc i

generic_create_cred gcred

svcauth_gss_register_pseudo�avor new

unix_domain_�nd new

spi_schedule_dv_device wqw

sock_alloc_inode wq



www.manaraa.com

45

• Functions in which the allocated variable escape through IDF Pattern LLEsc are:

Table .2 Functions involve LLEsc IDF pattern

Function Pointer to the allocated memory

__i915_add_request request

create_pid_cachep pcache

drm_prime_add_buf_handle member

serio_queue_event event

scsi_complete_async_scans data

open bb.bu�er

pm_vt_switch_required entry

drm_add_fake_info_node node

__hw_addr_create_ex ha

acpi_add_id id

region_chg nrg

drm_addctx ctx_entry

usb_driver_set_con�guration req

register_kretprobe inst

read_cis_cache cis

post�x_append_op elt

usbhid_modify_dquirk q_new

kcore_update_ram ent

usb_hub_clear_tt_bu�er clear

add_conn_list p

post�x_append_operand elt

sunrpc_cache_pipe_upcall buf
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• Functions in which the allocated variable escape through IDF Pattern FPEsc are:

Table .3 Functions involve FPEsc IDF pattern

Function Pointer to the allocated memory

ethtool_get_stats data

seq_read m.size

seq_read m.buf

cgroup_write_string bu�er

genl_family_rcv_msg attrbuf

setkey_unaligned bu�er

�fo_set_limit nla

xfrm_user_policy data

slave_update uctl

e1000_dump_eeprom data

pneigh_lookup n

inode_doinit_with_dentry context

soft_cursor ops.cursor_src

ahash_def_�nup priv

con_font_get font.data

ethtool_set_eeprom data

hidinput_led_worker buf

shash_setkey_unaligned bu�er

snd_mixer_oss_build_input uinfo

rngapi_reset buf

ethtool_self_test data

snd_mixer_oss_build_test info
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Table .4 Functions involve multiple IDF patterns

Functions Pointer to the allocated memory IDF Pattern

__netpoll_setup npinfo LLEsc, FPEsc

agp_3_5_enable cur SFEsc, LLEsc

Complete list of functions for each IDF pattern is publicly shared at:

https://drive.google.com/folderview?id=0B2krxqxu-hmXVEpxM01TVXdNN1E&usp=

drive_web

https://drive.google.com/folderview?id=0B2krxqxu-hmXVEpxM01TVXdNN1E&usp=drive_web
https://drive.google.com/folderview?id=0B2krxqxu-hmXVEpxM01TVXdNN1E&usp=drive_web
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